
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 3, August 2006

A Self-Stabilizing Link-Coloring Protocol in Tree Networks
with Permanent Byzantine Faults

Yusuke Sakurai∗
Information and Communication Systems Group, Sharp Corporation

and
Fukuhito Ooshita† and Toshimitsu Masuzawa‡

Graduate School of Information Science and Technology, Osaka University

Self-stabilizing protocols can tolerate any type and any number of transient faults. But
self-stabilizing protocols have no guarantee of their behavior against permanent faults. Thus,
investigation concerning self-stabilizing protocols resilient to permanent faults is important.
This paper proposes a self-stabilizing link-coloring protocol resilient to permanent Byzantine
faults in tree networks. The protocol assumes the central daemon, and uses � + 1 colors
where � is the maximum degree in the network. This protocol guarantees that, for any
nonfaulty process v, if the distance from v to any Byzantine ancestor of v is greater than two,
v reaches its desired states within three rounds and never changes its states after that. Thus,
it achieves fault containment with radius of two. Moreover, we prove that the containment
radius becomes �(log n) when we use only � colors, and prove that the containment radius
becomes �(n) under the distributed daemon. These lower bound results prove necessity of
� + 1 colors and the central daemon to achieve fault containment with a constant radius.

I. Introduction

SELF-STABILIZATION1 is one of the most effective and promising paradigms for fault-tolerant distributed
computing.2 A self-stabilizing protocol is guaranteed to achieve its desired behavior eventually regardless of the

initial network configuration (i.e., global state). This implies a self-stabilizing protocol is resilient to any number and
any type of transient faults since it can converge to its desired behavior from any configuration resulted by transient
faults. However the convergence to the desired behavior is guaranteed only on the assumption that no further fault
occurs during the convergence. Thus, a self-stabilizing protocol is not guaranteed to achieve its desired behavior
in the presence of a permanent fault. Thus, it is strongly desired to design self-stabilizing protocols resilient to
permanent faults.

There are some studies about self-stabilizing protocols resilient to permanent faults.3–10 Most of these studies
treat only crash faults, and these self-stabilizing protocols guarantee that each nonfaulty process achieves its desired
behavior regardless of the initial network configuration. Nesterenko and Arora9 treat Byzantine faults as permanent
faults. The main difficulty in tolerating Byzantine faults is caused by arbitrary and unbounded state changes of the
Byzantine processes: processes around the Byzantine processes may change their states in response to the state
changes of the Byzantine processes, and processes next to the processes changing their states may also change
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their states. This implies that the influence of the Byzantine processes expands to the whole system, and then no
process can achieve its desired behavior. Nesterenko and Arora9 give a novel definition of a self-stabilizing protocol
resilient to Byzantine faults. The protocol guarantees, by containing the influence of Byzantine processes to only
processes near them, that the other processes can achieve their desired behaviors eventually. They introduce the
containment radius as the distance between a Byzantine process and processes affected by the Byzantine process.
They also propose self-stabilizing protocols resilient to Byzantine faults for the vertex coloring problem and the
dining philosophers problem. The containment radiuses are one for the vertex coloring problem and two for the
dining philosophers problem.

The concept of fault containment is very popular in the field of self-stabilizing protocols.11–16 However, these
papers aim to contain the influence of a transient fault, and they do not consider (permanent) Byzantine faults.

In this paper, we consider a self-stabilizing link-coloring protocol resilient to Byzantine faults in tree networks.
Link-coloring of a distributed system is an assignment of colors to the communication links such that no two
communication links with the same color share a process in common. Link-coloring has many applications in
distributed systems. For example, some network models (e.g., wireless networks or a one-port unidirectional model17)
do not allow any process to engage multiple communications at the same time. In such models, we have to schedule
communications between two processes under the restriction that each process can engage at most one communication
at the same time. By assigning colors to links as above and scheduling communications so that only the links with
the same color are used at the same time, we satisfy the restriction. Thus, link-coloring protocol is often used
as the base protocol in such scheduling problems, e.g., data transfer scheduling and link scheduling in sensor
networks. Therefore, many distributed protocols for link-coloring are proposed.18–20 However, the fault tolerance is
not considered in these protocols.

In this paper, we propose a self-stabilizing link-coloring protocol resilient to Byzantine faults. The protocol
assumes the central daemon, i.e., exactly one process can execute an operation at each time, and uses � + 1 colors,
where � is the maximum degree of the network. The protocol guarantees that any nonfaulty process v reaches its
desired states within three rounds and never changes its state after that if v has no Byzantine ancestor with the distance
of two or less. Moreover, we show the following lower bound results for any self-stabilizing link-coloring protocol
resilient to Byzantine faults:

1. When only � colors are used, the containment radius becomes �(log n) if � ≥ 3, and �(n) if � = 2, where
n is the number of processes.

2. For any self-stabilizing link-coloring protocol that assumes the distributed daemon (i.e., an arbitrary number
of processes can execute operations at each time), the containment radius is �(n) even when it can use
arbitrary number of colors.

These two lower bound results prove necessity of � + 1 colors and the central daemon to attain the fault containment
against Byzantine faults with a constant containment radius.

II. Preliminaries
A. Distributed System

A distributed system S = (P, L) consists of a set P = {v1, v2, . . . , vn} of processes and a set L of communication
links (simply called links). A link is an unordered pair of distinct processes, and processes v and w are called
neighbors if (v, w) ∈ L. A distributed system S can be regarded as a graph with a vertex set P and a link set L, and
thus, we use some graph terminologies for a distributed system S.

We consider rooted tree networks in this paper. For each process v ∈ P , Nv denotes the set of neighbors of v, prtv
denotes the parent of v, and Chv denotes the set of children of v. We do not assume existence of a unique identifier of
each process. Instead we assume each process can identify its parent from its neighbors, and distinguish its children
by having a local order. The x-th child of process v is denoted by chv(x) (1 ≤ x ≤ |Chv|). The distance from the
root process to process v is called the depth of v. The maximum degree of a tree network is denoted by �, i.e., the
root process has at most � children and any other process has at most � − 1 children.

Each process is modeled by a state machine that can communicate with its neighbors through link registers. For
each pair of neighboring processes, u and v, there are two link registers ru,v and rv,u. Message transmission from u

to v is realized as follows: u writes a message to link register ru,v and then v reads it from ru,v .
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For each process v, let Inv = {ru,v|u ∈ Nv} be the input register set of v and Outv = {rv,u|u ∈ Nv} be the output
register set of v. For convenience, we use variables to denote the states of a process and a link register, and use
guarded actions (simply called actions) to denote the state transition function of a process. Each action is of the
following form:

〈guard〉 −→ 〈statement〉
The guard of an action of a process v is a boolean expression on the variables of v and all input registers r (r ∈ Inv).
The statement of an action of v updates one or more variables of v and all output registers r (r ∈ Outv). The values
assigned to the variables of v and its output registers r (r ∈ Outv) depend only on the values of variables of v and
its input registers r (r ∈ Inv). The statement of an action can be executed only if its guard evaluates to true. When
guards of multiple actions evaluate to true, one of these actions is deterministically selected and executed. We assume
that each action is atomically executed: the evaluation of the guard and the execution of the corresponding statement
of the action, if executed, are done in one atomic step. The execution of an action of v is called a step of v.

A global state of a distributed system is called a configuration and is denoted by a conjunction of states of all
processes and all link registers. We define C as the set of all possible configurations of a distributed system S. For each
configuration ρ ∈ C, ρ|v and ρ|r denote the states of process v and link register r in configuration ρ respectively.

When a process v has a guarded action whose guard is true at configuration ρ, we say v is enabled at ρ. Let
En(ρ, v) be a predicate such that En(ρ, v) = true iff v is enabled at ρ. Letting Q be any set of processes, when

configuration ρ changes to configuration ρ ′ by executing actions of every enabled process in Q, we denote ρ
Q	→ ρ ′.

A schedule of a distributed system is an infinite sequence of sets of processes. Let Q = Q1, Q2, . . . be a schedule.
An infinite sequence of configurations e = ρ0, ρ1, . . . is called an execution from an initial configuration ρ0 by a

schedule Q, if e satisfies ρi

Qi+1	→ ρi+1 for each i (i ≥ 0). Notice that the execution e is uniquely determined from its
initial configuration and a schedule Q since the executed action of each process is deterministically selected (even
when a process has two or more actions with true guards). The set of possible schedules in a distributed system is
sometimes modeled by a scheduler called a daemon. In this paper, we consider two kinds of daemons, the distributed
daemon and the central daemon. Under the distributed daemon, each Qi can be an arbitrary set of processes. That
is, the distributed daemon allows two or more processes to execute their actions simultaneously. By contrast, the
central daemon is a special case of the distributed daemon. Under the central daemon, |Qi | = 1 holds for each i,
i.e., no two processes execute their actions simultaneously. Under the central daemon, when Qi = {qi} for each i,

we simply describe a schedule as Q = q1, q2, . . . and describe a configuration transition as ρi

qi+1	→ ρi+1 instead of

ρi

Qi+1	→ ρi+1. The set of all possible executions from an initial configuration ρ0 ∈ C is denoted by Eρ0 . The set of all
possible executions is denoted by E, that is, E = ⋃

ρ0∈C Eρ0 .
We consider asynchronous distributed systems where we can make no assumption on schedules except that any

schedule is weakly fair: every process appears in the schedule infinitely often. Notice that the weakly fair schedules
do not necessarily imply that processes actually execute actions infinitely often. If no guards of a process evaluate
to true whenever the process is activated, the process cannot execute any action.

In this paper, we consider two kinds of permanent faults: crash faults and Byzantine faults.
• crash faults: A crashed process (i.e., a process with the crash fault) prematurely stops execution of its actions.

If v is a crashed process, v does not change states of v and its output registers r (r ∈ Outv) after certain time
even when there is an action with true guard. Before that time, v acts as a nonfaulty process and correctly
executes its actions.

• Byzantine faults: A Byzantine process (i.e., a process with the Byzantine fault) can arbitrarily behave indepen-
dently from its actions. If v is a Byzantine process, v can repeatedly change states of v and its output registers
r (r ∈ Outv) arbitrarily.

We define BF and CF as the sets of Byzantine processes and crashed processes respectively. Since a crash fault can
be regarded as a special case of the Byzantine fault, BF ⊇ CF holds. However, in what follows, we assume without
loss of generality that BF ∩ CF = ∅ holds by excluding crashed processes from the set BF .

Let CF = {f1, f2, . . . , fc}. In distributed systems where faults can occur, an infinite sequence of configurations
e = ρ0, ρ1, . . . is called an execution by a schedule Q = Q1, Q2, . . ., if there exists t1, t2, . . . , tc such that the
following conditions hold for any i (i ≥ 0):
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• For any v ∈ Qi+1 − (BF ∪ CF), execution of an action of v changes v’s state from ρi |v to ρi+1|v (possibly
ρi |v = ρi+1|v) and changes the state of every output register r (r ∈ Outv) from ρi |r to ρi+1|r (possibly
ρi |r = ρi+1|r).

• For any fj ∈ Qi+1 ∩ CF , if i ≥ tj , the states of fj and each output register r (r ∈ Outfj
) remain unchanged

from ρi to ρi+1: ρi |fj = ρi+1|fj and ∀r ∈ Outfj
: ρi |r = ρi+1|r hold. If i < tj , execution of an action of

fj changes its state from ρi |fj to ρi+1|fj (possibly ρi |fj = ρi+1|fj ) and changes the state of every output
register r (r ∈ Outfj

) from ρi |r to ρi+1|r (possibly ρi |r = ρi+1|r). Notice that tj implies that process fj

becomes crashed between ρtj −1 and ρtj .
• For any v /∈ Qi+1, ρi |v = ρi+1|v and ∀r ∈ Outv : ρi |r = ρi+1|r hold.

Notice that, for any process v ∈ Qi+1 ∩ BF , ρi+1|v and ρi+1|r (r ∈ Outv) can be arbitrary states.
In asynchronous distributed systems, time is usually measured by asynchronous rounds (simply called rounds).

Let e = ρ0, ρ1, . . . be an execution from configuration ρ0 by a schedule Q = Q1, Q2, . . .. The first round of e is
defined to be the minimum prefix of e, e′ = ρ0, ρ1, . . . , ρk , such that

⋃k
i=1 Qi = P . Round t (t ≥ 2) is defined

recursively, by applying the above definition of the first round to e′′ = ρk, ρk+1, . . .. Intuitively, every process has a
chance to update its state in every round.

In Appendix A, we summarize notations in Table 1.

B. Self-Stabilizing Protocol Resilient to Byzantine Faults
In this paper, we treat only static problems, i.e., once the system reaches a desired configuration, the configuration

remains unchanged forever. For example, the spanning-tree construction problem, the leader election problem and
the coloring problem are examples of static problems, but the mutual exclusion problem is not a static problem2. A
static problem can be defined by a specification predicate, spec(v), for each process v, which specifies the condition
that v should satisfy at the desired configuration. A specification predicate spec(v) is a boolean expression on the
variables of processes Pv ⊆ P and link registers Rv ⊆ R, where R is the set of all link registers.

A self-stabilizing protocol is a protocol that guarantees each process v satisfies spec(v) eventually regardless of
the initial configuration. By this property, a self-stabilizing protocol can tolerate any number and any type of transient
faults. However, since we consider permanent faults such as Byzantine faults and crash faults, faulty processes cannot
satisfy spec(v). In addition, nonfaulty processes near the faulty processes can be influenced by the faulty processes
and cannot satisfy spec(v). Thus, Nesterenko and Arora9 define a self-stabilizing protocol resilient to these faults.
Informally, the protocol requires each nonfaulty process v far from any faulty process to satisfy spec(v) eventually.
They also propose concepts of strict tolerance and strict stabilization to define some classes of protocols resilient to
Byzantine faults. We combine the above two concepts, and propose (B, C)-self-stabilization with containment radius
(τ, µ), where B and C represent Byzantine faults and crash faults respectively. In the following definition, let �(v, l)

be the set of processes whose distances to v are l or less.

Definition 1. A configuration ρ0 is a (B, C)-stable configuration with containment radius (τ, µ) if and only if, for
any execution e = ρ0, ρ1, . . . and any process v, the following condition holds:

If the distance from v to any Byzantine process is more than τ (i.e., ∀w ∈ �(v, τ ) : w /∈ BF ) and the distance
from v to any crashed process is more than µ (i.e., ∀u ∈ �(v, µ) : u /∈ CF ), for any t (t ≥ 0),

i) v satisfies spec(v) in ρt ,
ii) both ρt |v = ρt+1|v and ∀r ∈ Outv : ρt |r = ρt+1|r hold.
Definition 1 states, once the system reaches a stable configuration, a process v sufficiently far from any faulty

process always satisfies spec(v) and never changes the states of v and its output registers r (r ∈ Outv) forever.

Definition 2. A protocol A is a (B, C)-self-stabilizing protocol with containment radius (τ, µ) if and only if, for any
execution e = ρ0, ρ1, . . . of A starting from any configuration ρ0, there exists ρt that is a (B, C)-stable configuration
with containment radius (τ, µ). We say that the stabilization time of A is k rounds for the minimum k such that the
last configuration of the k-th round is a stable configuration in any execution of a protocol A.

Definition 2 states a (B, C)-self-stabilizing protocol guarantees that the system eventually reaches a (B, C)-stable
configuration from any initial configuration. If a protocol A is a (B, C)-self-stabilizing protocol with containment
radius (τ, µ) for some constant τ and µ, A is strictly C-tolerant9 and strictly stabilizing.9
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C. Link-Coloring Problem
A link-coloring problem is to find an assignment of colors to links such that no two links with the same color

share a process in common. In the following, let CSET be a given set of colors, and let Color(e) ∈ CSET be a
color of link e. We define the distributed link-coloring problem as follows.

Definition 3. In the distributed link-coloring problem, the specification predicate spec(v) for a process v is given
as follows:

∀x, y ∈ Nv : x �= y =⇒ Color((v, x)) �= Color((v, y))

In the following, we define a b-link-coloring protocol as a link-coloring protocol using b colors.

III. Link-Coloring Protocol under the Central Daemon
In this section, we propose a (B, C)-self-stabilizing (� + 1)-link-coloring protocol with containment radius (2, 1).

Our protocol uses at most � + 1 colors for link-coloring, and thus, we assume CSET = {1, 2, . . . , � + 1}.
Let v be any process, u = prtv , and xv be an integer satisfying v = chu(xv), that is, v is the xv-th child of u. First,

we explain variables of a process and a link register (See Fig. 1).
• Process v has variables Colv(x) (1 ≤ x ≤ |Chv|). Variable Colv(x) denotes a color of link (v, chv(x)).

Notice that v does not have the variable to store the color of link (u, v) for its parent u. The color of the link
is stored in Colu(xv) of u.

• Link register ru,v has variables Numu,v and PCu,v . Process u assigns xv to Numu,v , and assigns Colu(xv) to
PCu,v . Process v can learn the color of link (u, v) by reading PCu,v . The value of Numu,v is used to determine
Colv(x) (1 ≤ x ≤ |Chv|).

• Link register rv,u has a variable USETv,u. Process v assigns {Colv(x)

∣∣∣1 ≤ x ≤ |Chv|} to USETv,u. Process u

can learn the colors assigned to links (v, chv(x)) (1 ≤ x ≤ |Chv|) by reading USETv,u.
For simplicity, we assume that Colv(x) ∈ CSET (1 ≤ x ≤ |Chv|), 1 ≤ Numu,v ≤ �, PCu,v ∈ CSET, and USETv,u ⊆
CSET are always satisfied at any configuration even when there exist some Byzantine processes. Notice that we
can make these assumptions without loss of generality, because these assumptions impose restriction only on the
domains of the variables. For example, when the variable Colv(x) is a variable of integer type, we can regard
(Colv(x) mod (� + 1)) + 1 as its actual value so that Colv(x) ∈ CSET should hold. In Appendix A, we summarize
these notations in Table 2.

Process v executes the following steps atomically:
1. Process v reads variables on all link registers in Inv .
2. Process v locally determines colors Colv(x) for all x (1 ≤ x ≤ |Chv|).

Fig. 1 Variables of v, link registers in Inv , and link registers in Outv , where u = prtv and cx = chv(x)

(1 ≤ x ≤ |Chv|).
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3. For each x (1 ≤ x ≤ |Chv|), letting w = chv(x), process v writes x and Colv(x) to Numv,w and PCv,w on
link register rv,w respectively.

4. Letting u = prtv , process v writes {Colv(x)|1 ≤ x ≤ |Chv|} to USETv,u on link register rv,u.
We show the protocol LINKCOLORING in Fig. 2. For simplicity, we show the protocol by the pseudo-code instead

of guarded actions. The function LINKCOLORING is the pseudo-code representing a guarded action, and is executed
in one atomic step. Notice that we can transform this protocol into a guarded action as follows: the statement of the
action of process v is the function LINKCOLORING for v, and the guard of the action is the boolean function f such
that f is true in configuration ρ if and only if execution of the function LINKCOLORING for v in ρ changes some
variables of v and its output registers r (r ∈ Outv).

To explain how each process v determines Colv(x), we define candidate color sets and preference colors. For
each process v and each x (1 ≤ x ≤ |Chv|), we define the candidate color set CColv(x) as follows:

CColv(x) = {x, x + 1, x + 2}
For each non-root process v and each x (1 ≤ x ≤ |Chv|, x �= Numprtv,v), we define the preference color PColv(x)

as follows:

PColv(x) =
{

x (x < Numprtv,v)

x + 2 (x > Numprtv,v)

We show an example of CColv(x) and PColv(x) in Fig. 3. The set described on each link denotes the candidate
color set of the link, and the underlined integer denotes the preference color.

In the protocol LINKCOLORING, nonfaulty process v assigns colors to links with the following policies: 1) Process
v always assigns colors to links so that no two links connecting to v has the same color, 2) Process v always assigns
color c ∈ CColv(x) to Colv(x), 3) If possible, v assigns color PColv(x) to Colv(x), and 4) If possible, v assigns
a color to Colv(Numu,v) such that no two links connecting to chv(Numu,v) have the same color. In the case that v is
the root process, v assigns x to Colv(x) (1 ≤ x ≤ |Chv|) (See lines 4 to 6). In the following paragraph, we explain
the assignment of v in the case that v is not the root process.

First, v assigns a color to Colv(x) for each x (x �= Numu,v).

Fig. 2 The protocol LINKCOLORING: the action of v.
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Fig. 3 The candidate color set and the preference color, where u = prtv .

• For each x (1 ≤ x ≤ min{Numu,v − 1, |Chv|}), v assigns a color as follows (See line 12 to 16):

Colv(x) =
{

x (x < PCu,v)

x + 1 (x ≥ PCu,v)

• For each x (Numu,v + 1 ≤ x ≤ |Chv|), v assigns a color as follows (See line 18 to 22):

Colv(x) =
{

x + 2 (x > PCu,v − 2)

x + 1 (x ≤ PCu,v − 2)

In this assignment, if PCu,v ∈ {Numu,v,Numu,v + 1,Numu,v + 2} holds, v assigns PColv(x) to Colv(x). We show
an example in Fig. 4(a). The boxed integer on each link denotes the color of the link. If either PCu,v < Numu,v or
PCu,v > Numu,v + 2 holds, v assigns a color in CColv(x) to Colv(x) (See Fig. 4(b) and (c)).

Next, v determines a color of Colv(x) in the case that x = Numu,v (See lines 23 to 36). Notice that this case
happens if |Chv| < Numu,v holds (See line 24). In this case, v changes Colv(x) only if v has to change it, that is,
either Colv(x) /∈ CColv(x) holds or two links connecting to v have the same color (See lines 28 to 30). Variable
CCOL is used as the candidate color of Colv(x), and CColv(x) is assigned to CCOL on line 27. On lines 31 to 34, v
determines the new value of Colv(x). On line 31, v reduces colors used around v from CCOL. Notice that CCOL

has at least two colors after this reduction. On line 32, v makes color set C by reducing colors used around chv(x)

from CCOL. If C �= ∅ holds, v assigns any color c ∈ C to Colv(x) (e.g., c = min(C) on line 33). Otherwise, v

assigns any color c ∈ CCOL (e.g., c = min(CCOL) on line 34). This assignment is based on the above policy 4. We
show two typical examples in Fig. 5. The value in a wide box denotes the value assigned to Colv(x). In the case of
Fig. 5(a), v can assign a color so that no two links with the same color share v or chv(x). In the case of Fig. 5(b), v

cannot do so, and assigns a color so that no two links with the same color share v.

Fig. 4 The assignment of Colv(x) for x (x �= Numu,v).
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Fig. 5 The assignment of Colv(x) for x = Numu,v .

After v executes an action, the guard of the action of v becomes false and spec(v) becomes true. Notice that, even
if v’s child w changes USETw,v , v does not change any variable. This is because the guard of the action of v does
not include variables USETw,v . In addition, spec(v) does not include variables USETw,v (w ∈ Chv). Thus, once v

executes an action, even when w ∈ Chv is a Byzantine process and changes USETw,v arbitrarily, the guard of the
action of v remains false and spec(v) remains true unless prtv changes PCprtv,v .

Assume v and u = prtv are nonfaulty processes, and prtu is a Byzantine process. In what follows, we explain
how the influence of the Byzantine process prtu is contained in the candidate color sets and the preference colors.

Since u is a nonfaulty process, by the protocol, u assigns a color in CColu(x) to Colu(x) in the first round. Thus,
process u reduces the influence of Byzantine process prtu in the sense that the change of Colu(x) is constrained in
CColu(x) while the change of PCprtu,u is completely unconstrained.

As described above, u always assigns a color in CColu(x) to Colu(x) (1 ≤ x ≤ |Chu|). Consequently, letting
C = {Numu,v,Numu,v + 1,Numu,v + 2}, PCu,v = Colu(Numu,v) ∈ CColu(Numu,v) = C holds at any configuration
after the first round. Then, when v executes a step after the first round, v assigns PColv(x) to Colv(x) for each
x (x �= Numu,v), and assigns a color in CColv(Numu,v) to Colv(Numu,v). This implies v never changes Colv(x)

(x �= Numu,v) even when u changes PCu,v . However, v may have to change Colv(Numu,v) in response to change
of PCu,v . Let w = chv(Numu,v). Since w also assigns PColw(x) to Colw(x) for each x (x �= Numv,w) after the
second round, links that colors in C can be assigned to and connects to either v or w are only (u, v), (v, w), and
(w, chw(Numu,v)). Thus, v can assign a color in C to Colv(Numu,v) so that the color of (v, w) can differ from those
of (u, v) and (w, chw(Numu,v)). Therefore, w, a process apart from the Byzantine ancestor by distance of three, is
not affected by the Byzantine process, and we attain the fault containment against the Byzantine faults. Concerning
the protocol LINKCOLORING, we have the following theorem.

Theorem 1. The protocol LINKCOLORING is a (� + 1)-link-coloring protocol satisfying the following property:
• Let e = ρ0, ρ1, . . . be any execution, v ∈ P be any nonfaulty process, and ρs be the last configuration of the

third round. When v has no Byzantine ancestor with the distance of two or less and has no crashed parent, for
any t (t ≥ s),
i) v satisfies spec(v) in ρt , and,

ii) both ρt |v = ρt+1|v and ∀r ∈ Outv : ρt |r = ρt+1|r hold. �
From Theorem 1, we clearly have the following corollary.

Corollary 1. The protocol LINKCOLORING ia a (B, C)-self-stabilizing (� + 1)-link-coloring protocol with contain-
ment radius (2, 1). The stabilization time of LINKCOLORING is three rounds. �

In what follows, we formally prove Theorem 1. First, we redefine the specification predicate spec(v) with the
variables used in the protocol LINKCOLORING.
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• If v is the root process,

spec(v) = ∀x, y(1 ≤ x < y ≤ |Chv|) : Colv(x) �= Colv(y).

• If v is not the root process, letting xv be an integer satisfying v = chprtv (xv),

spec(v) = [∀x, y(1 ≤ x < y ≤ |Chv|) : Colv(x) �= Colv(y)]
∧ [∀x(1 ≤ x ≤ |Chv|) : Colv(x) �= Colprtv (xv)]

Notice that, for each leaf v, spec(v) always holds. Thus, in the following, we consider only the root process and
intermediate processes.

Next, we define three states of a process v.

Definition 4. Process v is in a candidate state if v satisfies the following two conditions:
• ∀x, y(1 ≤ x < y ≤ |Chv|) : Colv(x) �= Colv(y).
• ∀x(1 ≤ x ≤ |Chv|) : Colv(x) ∈ CColv(x).

Definition 5. Process v is in a preference state if v satisfies the following two conditions:
• Process v is in a candidate state.
• If v is not the root process, ∀x(1 ≤ x ≤ |Chv|, x �= Numprtv,v) : Colv(x) = PColv(x) holds.

Definition 6. Process v is in a stable state if v satisfies the following two conditions:
• Process v is in a preference state.
• If v is not the root process, letting xv be an integer satisfying v = chprtv (xv), ∀x(1 ≤ x ≤ |Chv|) : Colv(x) �=

Colprtv (xv) holds.
Notice that, for the root process r , if r is in a candidate state, r is also in a preference state and in a stable state,

and thus, the above three states are equivalent for the root process r . In the following, we use predicates CS(ρ, v),
PS(ρ, v), and SS(ρ, v) to state that v is in a candidate state, in a preference state, and in a stable state in configuration
ρ respectively. Notice that, if SS(ρ, v) holds, v satisfies spec(v) in ρ, and ¬En(ρ, v) holds.

Recall that nonfaulty process v satisfies spec(v) immediately after executing an action, and the guards of actions
of v and spec(v) do not include variables USETw,v (w ∈ Chv). Thus, once v executes an action, even when w ∈ Chv

is a Byzantine process and changes USETw,v arbitrarily, the guards of actions of v remain false and spec(v) remains
true unless prtv changes PCprtv,v .

We consider two cases:
A. Processes v, prtv , and prtprtv are nonfaulty processes (Lemma 3),
B. Process v and prtv are nonfaulty processes, and prtprtv is a crashed process (Lemma 4).
First, we consider the case A.

Lemma 1. Let Q = q1, q2, . . . be a schedule, and e = ρ0, ρ1, . . . be an execution by Q. Let v be a nonfaulty process
and ρs be the last configuration of the first round. Then, CS(ρt , v) holds in any configuration ρt (t ≥ s).

Proof. By the definition of the round, there exists l such that ql = v (l ≤ s). By the protocol, it is obvious that
CS(ρl, v) holds. For any i (i ≥ l), since CS(ρi, v) depends on only the variables of v in ρi , CS(ρi, v) still holds
even when any other process executes a step. In addition, CS(ρi, v) still holds even when v re-executes a step. Thus,
the lemma holds.

Lemma 2. Let Q = q1, q2, . . . be a schedule, and e = ρ0, ρ1, . . . be an execution by Q. Let v be a process such
that v is not the root and both v and prtv are nonfaulty. Let ρs be the last configuration of the second round. Then,
PS(ρt , v) holds in any configuration ρt (t ≥ s).

Proof. Let u = prtv , xv be an integer satisfying v = chu(xv), and ρk be the last configuration of the first round.
Then, for any ρj (j ≥ k), CS(ρj , u) holds by Lemma 1. Since u is a nonfaulty process, by the protocol, both PCu,v =
Colu(xv) and Numu,v = xv hold in ρj . Thus, PCu,v = Colu(Numu,v) ∈ {Numu,v,Numu,v + 1,Numu,v + 2} holds
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in ρj . By the definition of the round, there exists l such that v = ql (k < l ≤ s). Then, since PCu,v ∈ CColu(Numu,v),
v assigns PColv(x) toColv(x) for each x (x �= Numu,v), and thus, PS(ρl, v) holds. For any i (i ≥ l), since PS(ρi, v)

depends on only the variables of v in ρi , PS(ρi, v) still holds even when any other process executes a step. In addition,
PS(ρi, v) still holds even when v re-executes a step. Thus, the lemma holds.

Lemma 3. Let Q = q1, q2, . . . be a schedule, and e = ρ0, ρ1, . . . be an execution by Q. Let v be a process satisfying
one of the following conditions:

1. Process v is the root process and is nonfaulty.
2. Process v is a child of the root process, and both v and prtv are nonfaulty.
3. The depth of v is two or more, and all of v, prtv , and prtprtv are nonfaulty.

Then, letting ρs be the last configuration of the third round, for any t (t ≥ s),
i) v satisfies spec(v) in ρt , and,

ii) both ρt |v = ρt+1|v and ∀r ∈ Outv : ρt |r = ρt+1|r hold.

Proof. Case that v satisfies the condition 1. By the protocol, once v executes a step in the first round, v satisfies
spec(v) and never changes its state after that. Thus, the lemma holds.

Case that v satisfies the condition 2. By the protocol, once prtv executes a step in the first round, prtv never
changes PCprtv,v after that. Then, once v executes a step in the second round, v satisfies spec(v) and never changes
its state after that. Thus, the lemma holds.

Case that v satisfies the condition 3. Let u = prtv , xv be an integer satisfying v = chu(xv), and ρk be the last
configuration of the second round. By Lemma 2, for any j (j ≥ k), PS(ρj , u) and PS(ρj , v) hold. Notice that,
since u is a nonfaulty process, by the protocol, both PCu,v = Colu(xv) and Numu,v = xv hold in ρj . We consider
two cases.

• Case that Numu,v �= Numprtu,u holds. Since PS(ρj , u) and Numu,v �= Numprtu,u hold, PCu,v =
Colu(Numu,v) = PColu(Numu,v) holds in ρj , and thus, PCu,v remains unchanged after ρk . By the definition
of the round, there exists l such that v = ql (k < l ≤ s). Since PCu,v = PColu(Numu,v) ∈ {Numu,v,Numu,v +
1,Numu,v + 2} holds in ρl−1, v assigns colors to Colv(x) (1 ≤ x ≤ |Chv|) so that Colv(x) = PColv(x)

should hold for each x (x �= Numu,v) and Colv(Numu,v) ∈ CColv(Numu,v) should hold in ρl . Then, Colv(x)

(1 ≤ x ≤ |Chv|) and PCu,v are mutually different, and thus, v satisfies spec(v) in ρl . After ρl , since PCu,v

remains unchanged, v never changes any state. Therefore, the lemma holds.
• Case that Numu,v = Numprtu,u holds. Since PS(ρj , u) holds, PCu,v = Colu(Numu,v) ∈ CColu(Numu,v) =

{Numu,v,Numu,v + 1,Numu,v + 2} holds in ρj . By the definition of the round, there exists l such that v = ql

(k < l ≤ s). Since Colv(x) = PColv(x) for each x (x �= Numu,v) and Colv(Numu,v) ∈ CColv(Numu,v) hold
in ρl , Colv(x) (1 ≤ x ≤ |Chv|) and PCu,v are different each other, and thus, SS(ρl, v) holds.

Next, by the induction, we show that SS(ρm, v), ρm|v = ρm+1|v, and ∀r ∈ Outv : ρm|r = ρm+1|r hold for any
configuration ρm (m ≥ l). Assume that SS(ρm, v) holds in ρm.

– Case that both qm+1 �= v and qm+1 �= u hold. Since v does not execute a step, ρm|v = ρm+1|v and ∀r ∈ Outv :
ρm|r = ρm+1|r hold. Since PCu,v remains unchanged, SS(ρm+1, v) holds.

– Case that qm+1 = v holds. Since ¬En(ρm, v) holds, ρm|v = ρm+1|v and ∀r ∈ Outv : ρm|r = ρm+1|r hold.
Since PCu,v remains unchanged, SS(ρm+1, v) holds.

– Case that qm+1 = u holds. Since v does not execute a step, ρm|v = ρm+1|v and ∀r ∈ Outv : ρm|r = ρm+1|r
hold. If ¬En(ρm, u) holds, PCu,v remains unchanged, and thus, SS(ρm+1, v) holds. In the following, we
consider the case where En(ρm, u) holds. Let C = {Numu,v,Numu,v + 1,Numu,v + 2}. Since PS(ρm, u) holds
from Lemma 2,Colu(x) /∈ C holds for each x (x �= Numu,v). Furthermore, since PS(ρm, v) holds,Colv(x) /∈
C holds for each x (x �= Numu,v). Thus, u can assign a color c ∈ C − {PCprtu,u,Colv(Numu,v)} to PCu,v

(= Colu(Numu,v)). Thus, SS(ρm+1, v) holds.
By the induction, for any configuration ρm (m ≥ l), SS(ρm, v), ρm|v = ρm+1|v, and ∀r ∈ Outv : ρm|r = ρm+1|r

hold. Therefore, the lemma holds.

Next, we consider the case B. In the following, for each process p, ACT (p) denotes the last round in which p

changes some states of itself or its output registers. If p does not change any state from the initial configuration, we
denote ACT (p) = 0.

429



SAKURAI, OOSHITA, AND MASUZAWA

Lemma 4. Let Q = q1, q2, . . . be a schedule, e = ρ0, ρ1, . . . be an execution by Q. Let v be a nonfaulty process
with depth of at least two such that prtv is a nonfaulty process and prtprtv is a crashed process. Let ρs be the last
configuration of the third round. Then, for any configuration ρt (t ≥ s),

i) v satisfies spec(v) in ρt , and,
ii) both ρt |v = ρt+1|v and ∀r ∈ Outv : ρt |r = ρt+1|r hold.

Proof. Let u = prtv , and xv be an integer satisfying v = chu(xv). We consider three cases.
Case that ACT (prtu) ≤ 1 holds. Since prtu never changes any state in the second round or later, u never changes

any state after u executes a step in the second round. Thus, v never changes any state after v executes a step in the
third round. Since u is nonfaulty, PCu,v = Colu(xv) holds after u executes a step in the first round. Thus, v satisfies
spec(v) in the configuration immediately after v executes a step in the third round. Since u and v do not change any
state after ρs , the lemma holds.

Case that ACT (prtu) = 2 holds. Since prtu, u, and v behave as nonfaulty processes during the first two rounds,
letting ρk be the last configuration in the second round, CS(ρk, prtu), PS(ρk, u), and PS(ρk, v) hold by Lemma 1
and 2. We can show the lemma in the similar way as in the proof of Lemma 3.

Case that ACT (prtu) ≥ 3 holds. In this case, prtu and u behaves as nonfaulty processes during the first three
rounds. By Lemma 3, v satisfies spec(v) in the last configuration of third round, and never changes any state
after that.

From Lemmas 3 and 4, proof of Theorem 1 completes.
Corollary 1 states that the protocol LINKCOLORING attains the containment radius of one for crash faults. The

containment radius for crash faults is the best possible one in the link register model, when a parent process determines
colors of links connecting to its children. This is because, in the initial configuration, a link register can hold an
arbitrary value independent of the state of its writer process, and thus, no process can be aware of the colors a parent
process assigns to the links connecting to its children when the parent is a crashed process in the initial configuration.
For the case that a process crashes after execution of a step, we can show an additional property (Theorem 2) of the
protocol LINKCOLORING.

We define that a process v is in a consistent state if PCv,chv(x) = Colv(x) holds for any x (1 ≤ x ≤ |Chv|). Notice
that, for any process v /∈ BF , once v executes an action, v is in a consistent state forever. For nonfaulty process v

apart from any Byzantine ancestor by distance of three or more, when prtv is a crashed process but crashes in a
consistent state, we can guarantee that process v satisfies spec(v).

Theorem 2. The protocol LINKCOLORING is a (� + 1)-link-coloring protocol satisfying the following property:
• Let e = ρ0, ρ1, . . . be any execution, v ∈ P be any nonfaulty process v, and ρs be the last configuration of

the third round. When v has no Byzantine ancestor with the distance of two or less and has the crashed parent
that crashes in a consistent state, for any t (t ≥ s),
i) v satisfies spec(v) in ρt , and,

ii) both ρt |v = ρt+1|v and ∀r ∈ Outv : ρt |r = ρt+1|r holds.
In what follows, we prove Theorem 2. We show Theorem 2 by considering the following two cases:
A. Process v is nonfaulty, and prtv is the root process and crashes in a consistent state (Lemma 5).
B. Process v is nonfaulty, prtv crashes in a consistent state, and prtprtv is not a Byzantine process (Lemma 6).
First, we consider the case A.

Lemma 5. Let Q = q1, q2, . . . be a schedule and e = ρ0, ρ1, . . . be an execution by Q. Let v be a nonfaulty process
such that prtv is the root process. Assume that prtv crashes in a consistent state. Let ρs be the last configuration of
the second round. Then, for any configuration ρt (t ≥ s),

i) v satisfies spec(v) in ρt , and,
ii) both ρt |v = ρt+1|v and ∀r ∈ Outv : ρt |r = ρt+1|r hold.

Proof. Let u = prtv and xv be an integer satisfying v = chprtv (xv). We consider two cases.
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Case that u executes a step. By the protocol, u never changes any state after u executes its first step. Consequently,
PCu,v remains unchanged after the last configuration of the first round. Notice that PCu,v = Colu(xv) holds. Thus,
once v executes a step in the second round, v satisfies spec(v) and never changes any state after that.

Case that u does not execute a step. Then, PCu,v remains unchanged forever. Since u crashes in a consistent state,
PCu,v = Colu(xv) holds. Thus, once v executes a step in the second round, v satisfies spec(v) and never changes
any state after that.

Next, we consider the case B.

Lemma 6. Let Q = q1, q2, . . . be a schedule and e = ρ0, ρ1, . . . be an execution by Q. Let v be a nonfaulty process
with depth of at least two. Assume that prtv crashes in a consistent state and prtprtv /∈ BF . Let ρs be the last
configuration of the third round. Then, for any configuration ρt (t ≥ s),

i) v satisfies spec(v) in ρt , and,
ii) both ρt |v = ρt+1|v and ∀r ∈ Outv : ρt |r = ρt+1|r hold.

Proof. Let u = prtv and xv be an integer satisfying v = chu(xv). We consider two cases.
Case that ACT (u) ≤ 2 holds. Since u never changes any state in the third round or later, v never changes any

state after v executes a step in the third round. Since u crashes in a consistent state, PCu,v = Colu(xv) holds after the
last configuration of the second round. Thus, v satisfies spec(v) in the configuration immediately after v executes a
step in the third round. Since u and v do not change any state after ρs , the lemma holds.

Case that ACT (u) ≥ 3 holds. In this case, u behaves as nonfaulty processes during the first three rounds. By
Theorem 1, v satisfies spec(v) in the last configuration of third round, and never changes any state after that.

From Theorem 1, Lemmas 5 and 6, Theorem 2 holds.

IV. Impossibility of Link-Coloring Using � Colors under the Central Daemon
In this section, we consider a self-stabilizing �-link-coloring protocol. For any tree network, �-link-coloring

is possible. However, we show that, for any self-stabilizing �-link-coloring protocol, the containment radius is
�(log n) if � ≥ 3, and �(n) if � = 2, where n is the number of processes. Thus, the protocol LINKCOLORING attains
the minimality in the number of colors for achieving a constant containment radius for Byzantine faults. To show
the lower bounds, we define a view of v as the states of v and all link registers in Inv . In the following discussion,
view(ρ, v) denotes the view of process v in configuration ρ.

Theorem 3. Assume � ≥ 3. For any (B, C)-self-stabilizing �-link-coloring protocol with containment radius (τ, µ)

in tree networks, τ = �(log n) holds, where n is the number of processes.
In what follows, we prove Theorem 3 by contradiction. We assume that the color of a link (u, v) is determined (or

coded) by the states of u, v, ru,v , and rv,u. Assume that A is a (B, C)-self-stabilizing �-link-coloring protocol with
containment radius (τ, µ).

Let a system S = (P, L) be a complete (� − 1)-ary tree such that each non-leaf process has exactly � − 1 children
and all leaf processes are at the same depth, say h. Then, n = ∑h

k=0(� − 1)k holds. Let P = {v1, v2, . . . , vn}, and let
chS

vi
(x) be the x-th child of vi in S. Let vl be a process with depth of �h/2�, vm = prtvl

, and c be an integer satisfying
vl = chS

vm
(c). We assume the set of Byzantine processes BF = {vl} and the set of crashed processes CF = ∅.

First, we claim the following.
• From any configuration, behavior of Byzantine process vl can eventually lead the system S to the configuration

satisfying the following Condition A (We show this claim in Lemma 7).
Condition A:
1) For any vi ∈ P − {vm, vl}, all links incident to vi have different colors.

2) Letting El and Em be the sets of all links incident to vl and vm respectively, {Color(e)

∣∣∣e ∈ (El ∪ Em) −
{(vl, vm)}} = CSET holds.

Notice that, in the configuration satisfying Condition A, whatever color is assigned to link (vl, vm), a link incident
to vl or vm has the same color as link (vl, vm).
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• From any configuration satisfying Condition A, behavior of Byzantine process vl can make some process
apart from vl at distance �(log n) eventually change its state (We show this claim in Lemma 8).

When the above executions are alternatively repeated in infinitely many times, some processes apart from vl at
distance �(log n) change their states infinitely often. Therefore, τ = �(log n) holds. In the followings, we show the
above claims.

Lemma 7. From any configuration, behavior of Byzantine process vl can eventually lead the system S to the
configuration satisfying Condition A.

Proof. Let ρ0 be any configuration of system S. To make the execution such that system S eventually reaches the con-
figuration satisfying Condition A, we construct a system T = (P ′, L′) as follows. Let P ′ = P ∪ {u1, u2, . . . , u�−1},
where ui /∈ P (1 ≤ i ≤ � − 1), and L′ is defined as follows (See Fig. 6):

1. chT
vi
(x) = chS

vi
(x) (i �= m)

2. chT
vm

(x) =
{

u1 (x = c)

chS
vm

(x)(x �= c)

3. chT
u1

(x) =




ux+1 (x < c)

vl (x = c)

ux (x > c)

For the system T , let σ0 be the initial configuration such that view(ρ0, vi) = view(σ0, vi) holds for any vi ,
QT = p1, p2, . . . be a schedule, eT = σ0, σ1, . . . be the execution by schedule QT in the case that BF = ∅ and
CF = ∅. Then, in eT , there exists a configuration σs such that any process v satisfies spec(v) and never changes any
state after σs .

Next, for the system S, we construct a schedule QS = q1, q2, . . . and an execution eS = ρ0, ρ1, . . . in the case that
BF = {vl} and CF = ∅. We construct the execution eS such that Byzantine process vl simulates the behavior of u1

and vl in eT (See Fig. 7). Formally, we construct QS and eS as follows:
We construct the schedule QS in which vi (i �= l) executes a step in the same order as in QT , and vl executes a

step immediately before each step of neighbors of vl . We construct the execution eS such that Byzantine process vl

simulates the behavior of u1 in eT for its parent vm and simulates vl in eT for its children. That is, if qα = vl , qα+1 = vm,
and qα+1 is the k-th step of vm in eS , vl changes the states of itself and link register rvl ,vm

so that ρα|vl = σβ |vl and
view(ρα, vm) = view(σβ, vm), where σβ is the configuration such that pβ+1 is the k-th step of vm in eT . And, if
qα = vl , qα+1 = chS

vl
(x), and qα+1 is the k-th step of chS

vl
(x) in eS , vl changes the states of itself and its output

Fig. 6 Two systems.
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Fig. 7 Byzantine process vl in S behaves as u1 for P1 and as vl for P2.

registers so that ρα|vl = σβ |vl and view(ρα, chS
vl
(x)) = view(σβ, chT

vl
(x)), where σβ is the configuration such that

pβ+1 is the k-th step of chT
vl
(x) in eT .

Then, any vi (i �= l) changes the states of itself and its output registers in the same way in eT . By the definition
of eS and eT , there exists a configuration ρt such that, any process vi (i �= l) never changes its state after ρt .

Let t ′ be the integer such that t ′ ≥ t and qt ′+1 ∈ Chvl
. In ρt ′ , colors of links not connecting to vl are the same as

those in σs . In addition, since vl(= qt ′) simulates vl in T , the state of vl in ρt ′ is the same as that in σs . Thus, colors
of links between vl and its children are the same as those in σs . Therefore, colors of links except for (vm, vl) in ρt ′

are the same as those in σs , and thus, ρt ′ satisfies the first condition of A.
In the following, we show that ρt ′ also satisfies the second condition of A. Let ES(v) and ET (v) be the sets

of all links incident to v in S and in T respectively. Let COL(ρ, E) be the set of colors that links in E have
in configuration ρ. Let U = COL(ρt ′ , (ES(vl) ∪ ES(vm)) − {(vl, vm)}), V = COL(σs, ET (vl) − {(vl, u1)}), and
W = COL(σs, ET (vm) − {(vm, u1)}). By the definition of ρt ′ , U = V ∪ W holds. Then, since degrees of vl and
vm in T are �, letting χ1 and χ2 be the colors of (vl, u1) and (vm, u1) in configuration σs , V = CSET − {χ1}
and W = CSET − {χ2} hold. Since χ1 �= χ2, V ∪ W = CSET holds, and thus, U = CSET holds. Therefore, ρt ′

satisfies the second condition of A.

Lemma 8. From any configuration satisfying Condition A, behavior of Byzantine process vl can make some process
apart from vl at distance �(log n) eventually change its state.

Proof. Let ρ be a configuration satisfying A. We consider the execution from ρ such that a Byzantine process vl

behaves as a nonfaulty process, that is, all processes behave correctly. The execution is the same as the execution
from ρ in the case all processes are nonfaulty. Thus, the system reaches a configuration ρ ′ where any process v

satisfies spec(v). Recall that, in ρ, whatever color is assigned to link (vl, vm), a link incident to vl or vm has the same
color as link (vl, vm). Thus, there exists va1 ∈ {vl, vm} and va2 ∈ Nva1

− {vl, vm} such that the color of link (va1 , va2)

in ρ ′ is differnt from that in ρ. Since all links incident to va2 have different colors in ρ, if the degree of va2 is �, there
exists neighbor va3 of va2 such that the color of link (va2 , va3) in ρ ′ is different from that in ρ. In the similar way, we
can construct a sequence of links, (va1 , va2), (va2 , va3), . . . , (vaf −1 , vaf

), whose colors in ρ ′ are different from those
in ρ. Notice that the degree of vaf

, the termination process in the sequence, is not �. Consequently, the state of
either vaf −1 , vaf

, raf −1,af
, or raf ,af −1 in ρ is different from that in ρ ′. Since the degree of vaf

is not � and the system
S is a complete (� − 1)-ary tree, vaf

is the root process or a leaf process. Thus, the distance from vaf −1 (or vaf
) to a
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Byzantine process vl is �(h) = �(log n). Since ρ is a (B, C)-stable configuration with containment radius (τ, µ),
processes whose distance to vl is more than τ do not change any state. Therefore, τ = �(log n).

From Lemmas 7 and 8, Theorem 3 holds.
Similarly, we can prove the following theorem for the case of � = 2, i.e., a line graph of processes.

Theorem 4. Assume � = 2. For any (B, C)-self-stabilizing �-link-coloring protocol with containment radius (τ, µ)

in tree networks, τ = �(n) holds, where n is the number of processes.

V. Impossibility of Link-Coloring under the Distributed Daemon
In this section, we consider a self-stabilizing link-coloring protocol under the distributed daemon. The distributed

daemon allows two or more processes to execute their actions simultaneously, while the central daemon does not.
Thus, the distributed daemon is usually regarded as a more practical model. However in this section, we show that, for
any self-stabilizing link-coloring protocol, the influence of a Byzantine process expands to a process whose distance
to the Byzantine process is �(n) even when it can use arbitrarily large number of colors. This lower bound result
implies that the assumption of the central daemon is reasonable to attain a constant containment radius for Byzantine
faults.

Theorem 5. Let n be the number of processes, and A be a link-coloring protocol under the distributed daemon. If
A is a (B, C)-self-stabilizing protocol with containment radius (τ, µ), τ = �(n) holds.

Proof. We assume that the color of a link (u, v) is determined by the states of u, v, ru,v , and rv,u. Assume that A is a
(B, C)-self-stabilizing protocol with containment radius (τ, µ).

We consider a distributed system S = (P, L) in the form of a line graph: Let P = {v1, v2, . . . , vn} and L =
{(vi, vi+1)|1 ≤ i ≤ n − 1}, where v1 is the root process. Let BF = {v1, vn} and CF = ∅.

We consider an execution e = ρ0, ρ1, . . . by a schedule Q = Q1, Q2, . . ., where Qi = P for any i. Con-
sider the initial configuration ρ0 such that view(ρ0, v2) = view(ρ0, v3) = · · · = view(ρ0, vn−1) holds. Since
processes v2, v3, . . . , vn−1 execute the same step, view(ρ1, v3) = view(ρ1, v4) = · · · = view(ρ1, vn−2) holds (say
view(ρ1, v3) = s1). Then, we consider that Byzantine processes v1 and vn change the states so that view(ρ1, v2) =
view(ρ1, vn−1) = s1 can hold. This implies view(ρ1, v2) = view(ρ1, v3) = · · · = view(ρ1, vn−1) = s1 holds.When
Byzantine processes execute their steps similarly, we have view(ρi, v2) = view(ρi, v3) = · · · = view(ρi, vn−1) =
si for any i. It shows that, for any ρi , Color((v2, v3)) = Color((v3, v4)) = · · · = Color((vn−2, vn−1)) holds. Thus,
letting h = � n

2 �, a process vh cannot satisfy spec(vh). Since the distance from vh to any Byzantine process is �(n),
τ = �(n) holds.

VI. Conclusion
In this paper, we considered a self-stabilizing link-coloring protocol resilient to Byzantine faults in rooted tree

networks. First, under the central daemon, we proposed a self-stabilizing link-coloring protocol resilient to Byzantine
faults. The protocol uses � + 1 colors, where � is the maximum degree of the network, and guarantees that any
nonfaulty process v reaches its desired states within three rounds and never changes its state after that if v has no
Byzantine ancestor with the distance of two or less and has no crashed parent.

We also show the following lower bound results for any self-stabilizing link-coloring protocol resilient to Byzantine
faults:

1. When only � colors are used, the containment radius becomes �(log n) if � ≥ 3, and �(n) if � = 2, where
n is the number of processes.

2. For any self-stabilizing link-coloring protocol that assumes the distributed daemon, the containment radius
is �(n) even when it can use arbitrary number of colors.

These two lower bound results prove necessity of � + 1 colors and the central daemon to attain the fault containment
against Byzantine faults with a constant containment radius.
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Appendix A The Table of Notations

Table 1 The table of notations introduced in Section 2.

Notation Meaning

Nv The set of neighbors of v.
prtv The parent of v.
Chv The set of children of v.
chv(x) The x-th child of v.
� The maximum degree of a tree network.
Inv The input register set of v.
Outv The output register set of v.
ρ|v (ρ|r) The state of process v (link register r) at configuration ρ.
En(ρ, v) The predicate such that En(ρ, v) = true iff v is enabled at configuration ρ.
BF The set of Byzantine processes.
CF The set of crashed processes.

Table 2 The table of notations used in Section 3, where u = prtv and cx = chv(x) (1 ≤ x ≤ |Chv|).
Notation Meaning

Colv(x) The variable on v that represents a color of link (v, cx).
Numu,v The variable on link register ru,v . When v is the x-th child of u, Numu,v is set to x.
PCu,v The variable on link register ru,v that represents a color of link (u, v).
USETv,u The variable on link register rv,u that represents {Colv(x)|1 ≤ x ≤ |Chv|}.
CColv(x) The candidate color set of link (v, cx).
PColv(x) The preference color of link (v, cx).
CS(ρ, v) The predicate such that CS(ρ, v) = true iff v is in a candidate state at configuration ρ.
PS(ρ, v) The predicate such that PS(ρ, v) = true iff v is in a preference state at configuration ρ.
SS(ρ, v) The predicate such that SS(ρ, v) = true iff v is in a stable state at configuration ρ.
ACT (v) The last round in which v changes some states of itself or its output registers.
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